关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

微生物学检验基本技术(六)

2021.4.27

二、沉淀反应
可溶性抗原(如细菌的培养滤液、含细菌的患者血清、脑脊液及组织浸出液等)与相应抗体相混合,在比例适合和适量电解质的存在等条件下,形成肉眼可见的沉淀物,称沉淀反应。利用沉淀反应进行血清学试验的方法称为沉淀试验。沉淀反应有环状、絮状和琼脂扩散法3种基本类型。
1.环状沉淀试验
将已知的抗血清加于内径1~3mm,长75mm的玻璃细管中约三分之一高度,然后沿管壁徐徐加入已适当稀释的待测抗原溶液,使成为分界清晰的二层,置室温或35℃5~30min后,如在两液面交界处形成肉眼可见的白色环状沉淀物为阳性反应。本试验主要用于鉴定微量抗原,如链球菌、肺炎链球菌、鼠疫耶尔森菌的鉴定及炭疽的诊断(Ascoli氏试验)。

絮状沉淀试验
指可溶性抗原与抗体在试管内以适当比例混合后,在电解质存在的条件下,出现絮状的沉淀物。有2种方法:一种是将恒定量的抗体分别与一系列稀释的抗原溶液在试管内混合,另一种是将恒定量的抗原分别与一系列稀释的抗血清在试管内混合,随后观察各管沉淀物出现的时间和量。通常在抗原与抗体比例最适管,出现沉淀物最快,量最多。本试验常用于毒素、类毒素、抗毒素的定量测定,还用于已知抗原测血清中的相应抗体,如肥达氏试验用于诊断伤寒、副伤寒等。


琼脂扩散试验
用琼脂制成固体的凝胶,使抗原和抗体在凝胶中扩散,若两者比例适当,则在相遇处形成肉眼可见的沉淀物(线或环),为阳性反应。常用的试验方法有:
(1)单向琼脂扩散试验:是将抗体预先在琼脂中混匀,制成凝胶板,凝固后在琼脂上打孔,孔中加入待试抗原,经一定时间扩散后,若抗原与抗体对应,则在孔周围比例适当处形成白色沉淀环。由于沉淀环大小与直径孔中抗原浓度成正比关系,故可事先用不同浓度的标准抗原制成标准曲线,来测定未知标本中抗原含量。本法是一种定量试验,主要用于检测标本中各种免疫球蛋白和血清中各种补体成分的含量。

(2)双向琼脂扩散试验:先制备琼脂凝胶板,待凝固后,根据需要在其上面多少个孔,孔间保持一定距离,然后将抗原和抗体分别注入小孔中,使两者相互扩散。如抗原与抗体相对应,浓度比例适当,经一定时间扩散后,在抗原抗体孔之间出现清晰的白色沉淀线。一对相应的抗原抗体只能形成一条线。因此,根据沉淀线的数目即可推测抗原液中有多少种抗原成分,根据沉淀线融合与否及交叉关系,还可鉴定两种抗原是否完全相同,还是部分相同。本法可用于检测未知抗原或抗体、分析和鉴定抗原成分、检测抗体或抗原的纯度、滴定抗血清的效价等。缺点是需时长,敏感性差。

(3)对流免疫电泳:是一种将双向扩散和电泳技术相结合的方法。试验时按双向扩散法在琼脂板上打孔,抗原加于阴极侧的孔中,抗体加于阳极侧的孔中,然后通电,在电场与电渗作用下抗原与抗体向相对方向移动,两者相遇后即可出现沉淀线。

(4)免疫电泳:是将琼脂电泳与双向琼脂扩散相结合的方法。先将抗原在琼脂平板上进行电泳,使其中各成分因电泳迁移率不同而分离区带。尔后沿电泳方向挖一与之平行的槽,加入特异性抗体作双向琼脂扩散。各区带中抗原分别在不同位置与抗体相遇生成弧状沉淀线。可据沉淀弧的数量、位置和形状,与已知标准抗原比对,即可分析样品中的成分及其性质。免疫电泳主要用于血清蛋白的组分分析。亦用于抗原和抗体提纯物的纯度鉴定。

三、补体结合反应
  是一种在补体参与下,以绵羊红细胞和溶血素为指示系统的抗原抗体反应。在试验时,先将定量补体(使用新鲜的豚鼠血清)加入待检系统中,使抗原抗体优先结合补体。如果待检系统中抗原与抗体相对应,加入的补体可被抗原抗体复合物所结合而固定,不再与以后加入的溶血系统起反应,不出现溶血现象,为补体结合反应阳性。如待检系统中的抗原抗体不相对应,则游离的补体与后面加入的溶血系统反应,从而出现溶血,为补体结合反应阴性。如果待检系统中抗原抗体比例不适当时,仍有部分补体游离,则此剩余的游离补体可作用于溶血系统产生不同程度的溶血现象,据此可判断阳性反应的强弱,推知抗原或抗体的效价。

本反应可用已知抗原测定未知抗体,也可用已知抗体测未知抗原。多用于检测某些病毒、立克次体和螺旋体病病人血清中的抗体。亦用于某些病毒分型试验。

四、荚膜肿胀试验
1.原理
特异性抗血清与相应细菌的荚膜抗原特异性结合形成复合物时,可使细菌荚膜显著增大出现肿胀。
2.方法
取洁净载玻片一张,两侧各加待检菌1~2接种环,于一侧加抗血清,另一侧加正常兔血清各1~2接种环,混匀;再于两侧各加1%亚甲蓝(美蓝)水溶液1接种环,混匀,分别加盖玻片,置湿盒中室温放置5~10min后镜检。
3.结果
若试验侧在蓝色细菌周围可见厚薄不等、边界清晰的无色环状物而对照侧无此现象,为荚膜肿胀试验阳性;试验侧与对照侧均不产生无色环状物则为荚膜肿胀试验阴性。
4. .应用
常用于肺炎链球菌、流感嗜血杆菌和炭疽芽胞梭菌等检测。

五、制动试验
原理
特异性抗鞭毛血清与相应运动活泼的细菌悬液混合,则抗鞭毛抗体与鞭毛抗原结合,使鞭毛强直、相互粘着而失去动力,细菌运动停止。
方法
将待检标本或增菌培养液1滴置于洁净玻片上,用显微镜观察细菌运动情况。再于待检标本上加 l滴适当稀释的特异的抗鞭毛血清,混匀,作悬滴镜检。
结果
若滴加抗血清后3~5min内,细菌运动停止,菌体凝集成块为制动试验阳性;反之,滴加抗血清后,细菌运动无改变为制动试验阴性。
应用
主要用于霍乱弧菌的快速鉴定。

第五节 分子生物学技术在微生物检验中的应用

  分子生物学技术的迅速发展,拓展了微生物学检验方面的应用空间。该技术具有敏感、特异、安全和快速等特点,在微生物检验中发挥着日益重要的作用。本节简要介绍分子生物学技术在微生物检验中的应用,具体检测方法参见有关专著或试剂盒说明书。

一、分子生物学技术在细菌分类中的应用
细菌的传统分类法和数值分类法以表型特征相似性为基础,而单纯表型相似性还不能准确地确定系统发育关系。随着分子生物学及遗传学的发展,细菌分类学中发展了一系列核酸分析方法,包括DNA分子中G+C百分含量测定、DNA-DNA杂交、16S rRNA相关度分析等。

DNA分子中G+C百分含量的测定
细菌DNA G+C或A+T摩尔百分比能反映细菌间DNA分子同源程度,不同种属间G+C mol%范围在25%~ 75%之间,但同一种细菌G+C mol%相当稳定,不受菌龄、培养条件和其他外界因素影响,亲缘关系越近的细菌,G+C mol%越相近,亲缘关系较远的细菌G+Cmol%也不同,但G+Cmol%相同或近似其亲缘关系不一定相近。最常用的测定方法是热变性温度法,其次是高效液相色谱法和浮力密度法。

DNA-DNA杂交
DNA杂交可得出DNA之间核苷酸顺序的互补程度,从而推断不同细菌基因组间的同源性。目前最常用的是复性速率法,变性DNA在溶液中复性(杂交)时,同源DNA的复性速率比异源DNA要快,同源性愈高,复性速率愈快。复性的过程也伴随着260nm紫外吸收的减少,再通过分光光度计直接测定变性DNA在一定条件下的复性速率,最后用理论推导的公式来计算DNA之间的同源性。同一菌的复性率为100%,80%~90%同源为同一种内同一亚种的细菌,60%~70%同源为同一种内不同亚种的细菌,20%~60%同源则是同一属中的不同菌种。这种方法还可对新菌种或表型性状差别很小而难以肯定的菌株做出较可靠的判定,并可修正其他方法的分类和鉴定错误。

3.16S rRNA同源性分析
(1) rRNA-DNA杂交:变性rRNA与变性DNA混合时,rRNA与其互补的DNA链形成杂交双链,rRNA分子与异源DNA杂交时,也能在其同源区形成互补双链,这种杂交双链的稳定性与其同源性成正相关,适于细菌属及属上水平的分类研究。现最常用的是硝酸纤维膜结合法。

(2)16S rRNA序列测定:rRNA分子具有高度保守性,在所有的细胞生物中都存在,在长期的进化中,16S rRNA的总碱基数有所不同,保守的部分使不同序列很容易相互对齐进行比较。1985年Lane等提出了改良的Sanger双脱氧链终止法测定rRNA序列,以rRNA为模板,以一个或多个寡核苷酸链做引物(与rRNA分子上的一段保守区域互补的15~20个核苷酸),用反转录酶合成反转录DNA。随着PCR技术的成熟,出现了利用PCR技术扩增16S rRNA基因(rDNA),然后采用Sanger法分析rDNA序列的方法,该法比前者更方便。当前的细菌分类要求测定16S rRNA基因的全序列来进行比较。16S rRNA基因序列分析技术是建立系统分类的主要技术,有人建议DNA相关性≥70%,16S rRNA序列差异≤1%~1.5%的细菌属于同一种,这使细菌的种有一个稳定和统一的标准。

二、分子生物学技术在细菌鉴定中的应用
十九世纪,细菌的鉴定主要依靠细菌的表型特征,因耗时长,往往耽误了对疾病诊断与治疗。随着分子生物学技术的发展及在临床微生物学检验中的应用,为微生物学实验室对细菌的快速鉴定,尤其是对难分离细菌的快速鉴定,提供了有利条件。目前在细菌鉴定中应用的分子生物学技术主要有核酸探针和核酸扩增技术等。

1.核酸探针技术
应用核酸探针技术检测病原微生物核酸是临床诊断学的重大发展,其原理是用带有酶、化学荧光物、放射性核素或生物素标记的已知序列特定DNA片段(称为探针),在一定条件下,按碱基互补原则探针与待测标本中的核酸杂交,通过对杂交信号的检测,从而鉴定标本中有无相应的病原微生物基因及其分子大小。常用核酸探针技术有固相杂交(斑点杂交、原位杂交、Southern印迹、Northern印迹等。)和液相杂交技术。
核酸探针适用于直接检出临床标本中的病原微生物,不受非病原微生物的影响,因此对某些尚不能分离培养或很难分离培养的微生物的检测具有重要的意义。随着探针标记的不断改进,检测试剂盒商品化,操作更简便易行。

核酸扩增技术
核酸扩增(又称基因或DNA扩增)技术是体外酶促合成DNA片段的新方法,其原理类似于DNA的体内半保留复制。主要由高温变性、低温退火和适温延伸三个步骤反复的热循环构成。即在高温下(95℃)下,待扩增的靶DNA双链受热变性成为两条单链DNA模板;而后在低温(37~55℃)情况下,两条人式合成的寡核苷酸引物与互补的单链DNA模板结合,形成部分双链;在Taq酶的最适温度(72℃)下,以引物的3`端为合成的起点,以单核苷酸为原料,沿模板以5` 3`方向延伸,合成DNA新链。这样每一双链DNA模板,经过一次解链、退火、延伸三个步骤的热循环后就成了两条双链DNA分子。如此反复进行,每一次循环所产生的DNA均能成为下一次循环的模板,每一次循环都使人工合成的引物间的DNA特异区段拷贝数扩增一倍。经过上述25~40个循环后,靶序列可以扩增成106~108。

核酸扩增技术(或称聚合酶链反应技术,PCR)具有高敏感性、高特异性、简便、快速等特点,临床实验室常用PCR技术来检测标本中某些微生物,尤其是对难以培养微生物的检测。其它用于检测微生物的PCR技术还有:RT-PCR、巢式PCR、多重PCR和随机引物PCR等。核酸扩增技术在临床微生物学检验中的应用见表6-4-2。

表6-4-2 核酸扩增技术在临床微生物学检验中的应用

微生物种类 核酸扩增技术 应 用
金黄色葡萄球菌 多重PCR 对mecA基因检测
凝固酶阴性葡萄球菌 多重PCR 对mecA基因检测
肺炎链球菌 PCR 自溶酶和青霉素结合酶的检测
化脓性链球菌 PCR M蛋白基因的菌株分型

淋病奈瑟菌 LCR 尿道分泌物标本直接检测
百日咳杆菌 PCR、巢式PCR 临床标本检测
结核分枝杆菌
PCR、SDA、Qbeta 肺结核的诊断、呼吸道标本检测、临床标本直接检测
鸟分枝杆菌复合群 PCR 鸟分枝杆菌和胞内分枝杆菌的区别
白喉棒状杆菌 PCR 产毒菌株的检测
肠致病性大肠埃希菌 多重PCR 产毒菌株检测
伤寒、副伤寒沙门菌 PCR 耐药质粒分型和检测
幽门螺杆菌 多重PCR 胃活检组织细菌检测
小肠结肠炎耶尔森菌 PCR 菌株分型
弯曲菌属 PCR 通过16s rRNA鉴定
杜克雷嗜血杆菌 多重PCR 生殖道溃疡病人的直接检测
嗜肺军团菌 PCR 与爆发相关菌株的分型
金氏杆菌属 PCR 临床标本鉴定
念珠菌属 PCR 通过“DNA”指纹鉴定
梅毒螺旋体 多重PCR 生殖道溃疡标本直接检测
伯氏螺旋体 巢式PCR 治疗前、中、后检测
问号状钩端螺旋体 PCR 钩端螺旋体血清型的鉴定
CDC group Ⅳ 群 PCR 分型
沙眼衣原体 PCR 无症状病人的诊断
三、分子生物学技术在细菌药敏试验中的应用
分子生物学技术在检测耐药基因方面日益受到重视。临床上可用PCR方法检测耐药基因,来判断待检菌对某种抗菌药物是否具有耐药性。但某些沉默耐药基因,如不表达相应产物,则可能不表现耐药表型。现在已有检测耐药基因的DNA探针和PCR商品化试剂盒供应,但多用于实验研究,常规工作中开展较少。目前能检测的耐药基因有:
β-内酰胺类
mecA、blaTEM、blaROB-1、blaSHV、blaIMP、blaMIR-1、blaOXA、blaPER-1、blaPER-2、blaOXY-1、blaOXA-10/11。
氨基糖苷类
aph(3’)—Ⅲ、aph(3’)—Ⅵ、ant(2〃)Ia、ant(4’)-Ia、aac(3) -Ia、acc(6’)-Ia、aac(3)-Va、aac(6’)-aph(2〃)、ant(4’)、ant(6’)-Ia、aac(6’)-Ic、aac(3)-Ib、aad(2〃)-Ia、ant(6)-I、aph(2〃)-Ic。
氯霉素
catP、catQ、catD、catI
环内酯类
ereA、ereB、ermA、ermAM、ermC、ermF、smp、mphA、mefA、vat。
磺胺类
sulⅠ、sulⅡ,sulA。
四环素
tet(A)、tet(C)、tet(D)、tet(K)、tet(L)、tet(M)、tet(O)、tet(P)、tet(S)、tet(Q)、tet(U)、tetA(P)。
甲氧苄啶
dhfrⅠ、dhfrⅡ、dhfrⅢ、dhfrⅤ、dhfrⅦ、dhfrⅨ、dhfrⅩ、dfrA、folH、dhfrⅧ。
8.糖肽类
vanA、vanB、vanB2, vanC1、vanC3、vanD。
9.喹诺酮类
gyrA、gyrB、parE。
10.乙胺丁醇
embB。
11.吡嗪酰胺
pncA。
12.利福平
rpoB。
13.链霉素
rpsL、rrs。
14.异烟肼
katG、inhA、ahpC。


推荐
关闭