关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

高分三号SAR影像在国家海域使用动态监测中的应用(一)

2020.10.06

范剑超①②REcor.gifREemail.gif, 王德毅REemail.gif, 赵建华①②REemail.gif, 宋德瑞①②REemail.gif, 韩敏REemail.gif, 姜大伟①②REemail.gif    

摘要:高分三号作为我国首颗民用C波段多极化多成像模式SAR卫星,其全天时全天候观测特点,在国家海域使用动态监测中具有较大优势。该文在分析国家海域使用遥感监测的基础上,探讨GF-3号 SAR成像模式和标准预处理方式,并以海岸线围填海、海水养殖等典型海域使用要素为例,给出GF-3不同成像模式在海域使用要素识别分类的部分研究结果,并与现有方法进行对比分析,最后展望了进一步研究方向。

关键词:合成孔径雷达    高分三号    海域使用动态监测    海岸线    围填海    海水养殖    

National Sea Area Use Dynamic Monitoring Based on GF-3 SAR Imagery

Abstract: GaoFen-3 (GF-3) is the first commercial C-Band multi-polarimetric Synthetic Aperture Radar (SAR) satellite that was launched by China. The characteristics observed by both all-day and all-weather observation depict significant advantages of national sea area use dynamic monitoring. We have thoroughly discussed both the imaging mode and the standard preprocessing of GF-3 imagery by analyzing national sea area use dynamic monitoring. We have portrayed reclamation and aquaculture as significant examples of dynamic monitoring. We have presented both identification and classification results using various image modes of GF-3 satellite, compared with the existing approaches. Finally, we have elaborated on the scope for future research.

Key words: Synthetic Aperture Radar (SAR)    GF-3    Marine area use dynamic monitor    Coastline    Reclamation    Floating raft aquaculture    

1 引言

高分3号(GaoFen-3, GF-3)是我国第1颗自主研制的民用C波段多极化合成孔径雷达(Synthetic Aperture Radar, SAR)卫星,具有高分辨率、大成像幅宽、多成像模式、长寿命运行等特点,可有效改变我国民用高分辨率SAR图像依赖进口的现状。GF-3号卫星通过全天候、全天时监测全球海洋资源,提供高质量和高精度的稳定观测数据,对海洋强国建设具有重大意义。GF-3自2016年8月发射以来,逐步进行在轨测试定标,数据质量逐渐稳定完善,可提供长序列多模态SAR数据。后续我国将持续发射多颗民用多极化SAR卫星,与GF-3号进行组网观测,提高覆盖频率,为国家海域使用动态实时监测提供契机。

近些年,高分辨率SAR理论与应用得到长足发展,在海洋领域诸如海洋灾害溢油、绿潮等,海洋波浪反演,海上目标船只、海冰识别,海域使用动态监测等各方面都具有广泛的应用。海洋SAR卫星遥感影像因为存在随机波浪等不同海况的影响,相对于陆地SAR遥感影像,包含了大量非高斯的,非平稳的相干斑噪声,空间可视性较差,对海域使用动态监测提出难点。针对海岸线变化,经典阈值分割、边缘梯度算子等常规方法无法获得准确结果;而围填海变化也无法采用经典变化检测思路,因为每幅图像海水背景随海况不断发生变化,直接使用会将海况变化错误地分析为围填海变化;养殖浮筏会导致后向散射系数的增强,然而这种现象与海水表面所刮的风和表面自身的活动有关,引发这种变化可能是涌浪、内波、海洋水深测量等不同海况因素相互作用的结果[1,2],因此难以从复杂的海水背景中精确识别海水养殖目标。

本文首先概述国家海域使用动态遥感监测,进而分析GF-3 SAR成像模式和标准化预处理,然后对海岸线围填海和海水浮筏养殖的监测工作进行总结和归纳,根据测试数据给出研究团队部分处理结果,最后对GF-3未来的应用发展方向做了展望。

2 国家海域使用遥感动态监测

国家海域使用动态监测采用高、中、低分辨率遥感影像,通过遥感影像处理、遥感信息提取、地理信息系统等多种技术手段,编制海洋区域用海规划,实现对全国海水养殖、海岸线、围填海和疑点疑区等海域使用要素进行动态监测,如图1所示,准确获得全国沿海用海现状分布情况,建立海域海岛动态遥感监测本底库,并及时更新到国家海域动态监视监测管理系统,保持全国海域海岛管理数据的现势性[3,4]

R17080-1.jpg图 1 海域使用动态监测示意图Fig.1 Schematic diagram of sea-area use dynamic monitoring

从2006年开始,对全海域范围进行宏观低分辨率的卫星监测,对内水及领海海域进行中高分辨率的卫星监测,对近岸重点海域进行高分辨率的无人机遥感动态监视监测。10~30 m的低分辨率遥感数据包括环境、高分、中巴、Landsat等;2~5 m的高分辨率遥感数据包括高分、资源、遥感系列、SPOT5/6/7、Rapideye等;优于1 m的高分切片数据包括 QuickBird、WorldView-1/2、GF2等。目前海域动态系统获取的原始遥感数据超过9000景。其中,低分辨率原始遥感数据1500余景,高分辨率原始遥感数据7500余景;高分切片数据20余万平方公里。低分辨率遥感数据按季度实现全国沿海全覆盖每年4次,高分辨率遥感数据实现全海域覆盖按年1次。

由于沿海地区常为多云阴雨天气,南方海域此特点更加明显,导致部分地区一年也无法完全覆盖,覆盖频率受到极大限制,高分辨率SAR 遥感影像不受天气条件影响,可有效解决这一难题。我国机载SAR研制较早,始于1976年,1979年9月获得的第1批SAR图像受脉冲压缩技术的限制,距离分辨率不高,只有180 m,方位分辨率30 m[5]。星载SAR系统主要有我国于2012年11月发射的HJ-1-C卫星,是我国首颗S波段小型合成孔径雷达卫星,主要用于环境监测与灾害预警,2016年8月10日,我国首颗C波段全极化SAR卫星在太原卫星发射中心升空,可全天时全天候监测海洋陆地信息,为国家海域建设提供极大数据支持. 实现海域使用开发利用活动实时科学管理[6]

3 高分三号海域使用监测模式

GF-3号提供新型C波段SAR遥感数据,具有多种成像模式,包括聚束、条带、扫描、波浪、全球观测、高低入射角等12种成像模式,最高分辨率可达1 m,其参数属性信息如表1所示。

table-icon.gif表 1 GF-3卫星SAR数据属性信息Tab.1 Attribute information of SAR data on GF-3

基于国家海域使用遥感动态监测精度要求,通常选用空间分辨率优于5 m的影像作为监测数据,将GF-3号聚束模式、精细条带模式和全极化条带Ⅰ模式数据作为备选数据,截止2017年8月,全国近岸海域数据覆盖情况如图2所示。此外,GF-3可提供全极化模式SAR遥感影像,可以有效描述目标的电磁散射特性(能量特性、相位特性和极化特性),其中极化特性可以更容易反映海水背景和海域使用目标的表面粗糙度差异、强二面角散射等其它雷达参数不能提供的信息,更利于表征海域使用目标特性。

R17080-2.jpg图 2 GF-3 SAR全国近岸海域数据覆盖情况Fig.2 GF-3 SAR data coverage of coastal area of China

海域使用动态监测需要严格精确的预处理操作,像控点误差必须在1个像素点之内。高分三号卫星数据通过国家卫星海洋应用中心分发,到本地后需要进行模运算、投影变换、系统几何校正,水平/垂直镜像、像控点几何精校正,陆地掩膜等相关预处理,除此以外,还需要进行SAR数据特有的多视处理、相干斑降噪等处理,通过上述处理操作完成遥感数据标准预处理,形成海域使用信息提取条件。

4 GF-3 SAR海岸线围填海变化监测

在全球范围内围填海主要分布于4个区域,分别是东亚及东南亚沿岸(中国、日本、新加坡等);波斯湾沿岸(迪拜、卡塔尔等);欧洲沿岸(荷兰、德国、英国等);美洲沿岸(美国东海岸、墨西哥湾沿岸等)。不同国家根据其围填海资源环境影响,实施围填海规划与管理。荷兰为了抗衡洪水、拓展生存空间,开展了近800年围填海活动,面积达到5200 km2;迪拜等波斯湾沿岸国家围填海都采用整体规划、仿自然生态设计等优美造型,因此在国内外开展围填海变化监测研究仍具有广泛的应用价值。

依据《海域使用分类体系》对围填海做出了明确定义:填海是指筑堤围割海域填成土地,并形成有效岸线的用海方式;围海是指通过筑堤或其他手段,以全部或部分闭合形式围割海域进行海洋开发的用海方式,两者统称为围填海。从定义可以得出,围填海变化信息提取的关键是海岸线有效识别,当获得精确海岸线之后,与历史基准遥感岸线相比对,即可获得围填海变化区域面积。围填海遥感监测研究最早起源于图像分割,常规图像分割的主要方法有:(1)阈值分割法,该方法通过直方图分割法或最大类间方差法确定阈值,将图像二值化从而区分目标和背景,该方法常用于目标和背景灰度值差较大的图像;(2)边缘检测法,该方法通过计算每个像元的梯度值构建边缘梯度算子,检测任一像元与邻近像元之间的差异,根据目标边缘处灰度值梯度的不连续性检测目标与背景之间的边界;(3)小波变换法,该方法先将图像信息转换为数字信号,通过小波变换对信号进行细化分析,识别信号中的奇异点,从而确定海岸线位置。(4)主动轮廓模型,该方法分为参数主动轮廓和几何主动轮廓两类,算法思想是通过最小化能量泛函将包括了目标在内的封闭曲线驱动到目标的边缘,实现目标边缘检测。

然而,海浪和悬浮泥沙等因素改变了海面对电磁波的反射能力,会在海洋SAR遥感影像上产生相干斑噪声。因此,对于海洋SAR遥感影像的处理,需要考虑海洋SAR遥感影像中相干斑噪声等因素的影响。国内学者如杨虎等[7]使用Sobel算子对对比度较低的SAR图像提取出了水边线信息,陆立明等[8]提出了基于方位向子孔径相关和RDD域散射能量特征相结合的海岸线提取方法并提取出海岸线,林维诗[9]采用基本水平集方法和基于区域特征的水平集方法进行边缘信息的有效提取,赵伟舟[10]设计了一种基于模糊集理论的SAR图像分割方法并取得良好的分割效果,李映等[11]提出并使用一种基于小波能量和邻域统计的无监督聚类方法进行SAR图像分割取得较好的分类结果,荆浩等[12]提出一种基于边缘特征海岸线检测方法、该算法能够在考虑海杂波的情况下实现岸线的高精度提取。

国外学者Kass[13]首先提出Snake主动轮廓模型,实现应用曲线逼近目标轮廓,之后Lee提出边界追踪算法实现了海岸线轮廓提取,Moctezuma[14]将Markovian分割法和多项式变换相结合将海洋SAR遥感影像降噪后提取出岸线信息,Sethianhe和Osher等[15]将水平集(Level Set)方法引入主动轮廓模型并提出几何活动轮廓(Geometric Active Contour, GAC)模型。范剑超团队针对海洋SAR遥感影像中的不规则相干斑噪声,提出基于区域的距离正则化几何主动轮廓模型(Regional Distance Regularized Geometric Active Contour models, RDRGAC),该算法构建区域面积项系数与等效视数(Equivalent Number of Looks, ENL)之间的联系,能够根据每景影像中的噪声水平进行参数的自动设定,实现岸线的高精度高速度自动提取。


推荐
关闭