关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

多个序列突变的筛查-HRMA(四)

2020.7.13

替代凝胶电泳

    标准是使用琼脂糖凝胶电泳和EB着色。通过片段的长度、纯度和条带的荧光量确定片段。HRMA是一种很有优势的技术;通过熔解图、存在其它熔解图的纯度(没有额外的熔解峰)和产生的大量荧光信号(图6)。使用HRMA的优势很明显;不需要灌胶、使用危险化学药品(EB),熔解比电泳速度快,数据分析可以自动完成。此外,HRMA是一种非破坏性的方法,当HRMA没能得到明确的结果时,片段依然可以在凝胶上进行分析。

2010531181343799.jpg

201053118549887.jpg

201053118614929.jpg

图6.用HRMA替代凝胶电泳。A:5个不同PCR片段的分析;因为片段间有清晰的熔解图差异,所有五个片段可以在一个分析完成。当熔解图部分重叠,可以做到每个片段分析。B:PCR上可以进行96个不同样品的分析。一个PCR失败的荧光,其它的可以通过荧光水平估计。纯化,包括引物二聚体的存在,可以被HRMA差异图的分析检测出(未显示)。C:HRMA后插入384板PCR后,进行第二轮选择。几个清晰的熔解组确定,表示包含克隆的组有相同的插入。确认所有组的存在,第一次分析后确认分析需要分离和软件必须重新分组。重复这一过程直到所有组得到确定。

    在我们实验室,HRMA迅速取代了凝胶电泳用于分析PCR产物。加入颜料后进行PCR(每10 μL体系加1 μL 10ⅹLC-Green染料),样品在管内95℃ 5min,降至室温,然后熔解。图5显示了分析5个不同片段,都得到了清晰的熔解图。在熔解峰低Tm值处可以辨认处引物二聚体。OUT等(提交手稿)使用HRMA代替凝胶电泳检测扩增,同时在MUTYH基因测序前确定长期的PCR指导。作者成功地检测了几乎所有的期望突变达0.5%(1/200同源染色体)

克隆鉴定

    一些实验产生一系列克隆需要测序确定。这些包括体外突变实验、甲基化研究、CDNA克隆确定不同剪接的水平或等位基因表达和噬菌体筛选。HRMA提供了一种有吸引力的工具筛选克隆,检测那些具有相同插入和变异。减少了大量的测序工作。图6C显示了第二次噬菌体筛选的结果。几个克隆组的实验结果具有相同的熔解图,显示实验成功地选择了几个不同的噬菌体克隆。随后每组的克隆代表测序验证了HRMA的结果;组内序列差异和测序确定[Pepers等2009]。以前,克隆插入确定是使用酶切和凝胶电泳,灵敏度低且实验繁琐[Verheesen 等, 2006]

结论

    HRMA的优势使它迅速吸引了一批新用户。HRMA操作简单、简单、灵活、成本低,非破坏性、灵敏度和特异性高的特点是它成为了筛查患者致病突变的一种新方法。综上所述,HRMA有多个吸引力的其他应用,使它具有多种分析核酸的功能。由于HRMA依然是一项新技术,期待它有更好的发展。Fluidigm公司推出了一个纳升qPCR系统[Spurgeon等, 2008],目前推出了一个96个样品分析的PCR实验(例如,同时进行9261个实验);设想这样一个系统时,将有助于HRMA。

参考文献

Al Momani R, Van Der Stoep N, Bakker E, Den Dunnen JT, Breuning MH,Ginjaar HB. 2009. Rapid and cost effective detection of small mutations in the DMD gene by high resolution melting curve analysis. Neuromuscul Disord(in press).
Armour JA, Sismani C, Patsalis PC, Cross G. 2000. Measurement of locus copy number by hybridisation with amplifiable probes. Nucleic Acids Res 28:605–609.
Aten E, White SJ, Kalf ME, Vossen RHAM, Thygesen HH, Kriek M, Breuning MH,Den Dunnen JT. 2008. Methods to detect CNVs in the human genome.Cytogenet Genome Res 123:313–321.
Bruder CE, Piotrowski A, Gijsbers AA, Andersson R, Erickson S, de Stahl TD,Menzel U, Sandgren J, von Tell D, Poplawski A, Crowley M, Crasto C,
Partridge EC, Tiwari H, Allison DB, Komorowski J, Van Ommen GJB,Boomsma DI, Pedersen NL, Den Dunnen JT, Wirdefeldt K, Dumanski JP.2008. Phenotypically concordant and discordant monozygotic twins display different DNA copy-number-variation profiles. Am J Hum Genet 82:763–771.
Dobrowolski S, Gray J, Miller T, Sears M. 2009. Identifying sequence variants in the human mitochondrial genome using high-resolution melt (HRM) profiling.Hum Mutat 30:891–898.
Ehrich M, Field JK, Liloglou T, Xinarianos G, Oeth P, Nelson MR, Cantor CR,van den Boom D. 2006. Cytosine methylation profiles as a molecular marker in non-small cell lung cancer. Cancer Res 66:10911–10918.
Erali M, Palais R, Wittwer C. 2008. SNP genotyping by unlabeled probe melting analysis. Methods Mol Biol 429:199–206.
Gundry CN, Dobrowolski SF, Martin YR, Robbins TC, Nay LM, Boyd N, Coyne T, Wall MD, Wittwer CT, Teng DH. 2008. Base-pair neutral homozygotes can be discriminated by calibrated high-resolution melting of small amplicons. Nucleic Acids Res 36:3401–3408.
Herrmann MG, Durtschi JD, Bromley LK, Wittwer CT, Voelkerding KV. 2006. Amplicon DNA melting analysis for mutation scanning and genotyping: crossplatform comparison of instruments and dyes. Clin Chem 52:494–503.
Herrmann MG, Durtschi JD, Wittwer CT, Voelkerding KV. 2007. Expanded instrument comparison of amplicon DNA melting analysis for mutation scanning and genotyping. Clin Chem 53:1544–1548.
Hes FJ, Nielsen M, Bik EC, Konvalinka D, Wijnen JT, Bakker E, Vasen HF, Breuning MH, Tops CM. 2008. Somatic APC mosaicism: an underestimated cause of polyposis coli. Gut 57:71–76.
Intemann CD, Thye T, Sievertsen J, Owusu-Dabo E, Horstmann RD, Meyer CG.2009. Genotyping of IRGM tetranucleotide promoter oligorepeats by fluorescenceresonance energy transfer. Biotechniques 46:58–60.
Maat W, van der Velden PA, Out-Luiting C, Plug M, Dirks-Mulder A, Jager MJ,Gruis NA. 2007. Epigenetic inactivation of RASSF1a in uveal melanoma. InvestOphthalmol Vis Sci 48:486–490.
Nguyen-Dumont T, Le Calvez-Kelm F, Forey N, McKay-Chopin S, Garritano S,Gioia-Patricola L, De Silva D, Weigel R, Breast Cancer Family Registries (BCFR),Kathleen Cuningham Foundation Consortium for research into Familial Breast cancer (kConFab), Sangrajrang S, Lesueur F, Tavtigian SV. 2009. Description and validation of high-throughput simultaneous genotyping and mutation scanning by high-resolution melting curve analysis. Hum Mutat 30:884–890.
Pepers B A, Schut MH, Vossen RHAM, Van Ommen GJB, Den Dunnen JT, Van Roon-Mom WMC. 2009. Cost-effective HRMA pre-sequence typing of clone libraries:application to phage display selection. BMC Biotechnology, in press. Provaznikova D, Kumstyrova T, Kotlin R, Salaj P, Matoska V, Hrachovinova I, Rittich S. 2008. High-resolution melting analysis for detection of MYH9 mutations. Platelets 19:471–475.
Reed GH, Wittwer CT. 2004. Sensitivity and specificity of single-nucleotidepolymorphism scanning by high-resolution melting analysis. Clin Chem50:1748–1754.
Rouleau E, Lefol C, Bourdon V, Coulet F, Noguchi T, Soubrier F, Bieche I, Olschwang S, Sobol H, Lidereau R. 2009. Quantitative PCR high-resolution melting (qPCR–HRM) curve analysis, a new approach to simultaneously screen point mutations and large rearrangements: application to MLH1 germline mutations in Lynch Syndrome. Hum Mutat 30:867–875.
Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G. 2002. Relative quantification of 40 nucleic acid sequences by multiplex ligationdependent probe amplification. Nucleic Acids Res 30:e57.
Seipp MT, Durtschi JD, Liew MA, Williams J, Damjanovich K, Pont-Kingdon G, Lyon E, Voelkerding KV, Wittwer CT. 2007. Unlabeled oligonucleotides asinternal temperature controls for genotyping by amplicon melting. J Mol Diagn9:284–289.
Seipp MT, Pattison D, Durtschi JD, Jama M, Voelkerding KV, Wittwer CT. 2008.Quadruplex genotyping of F5, F2, and MTHFR variants in a single closed tube by high-resolution amplicon melting. Clin Chem 54:108–115.
Spurgeon SL, Jones RC, Ramakrishnan R. 2008. High throughput gene expression measurement with real time PCR in a microfluidic dynamic array. PLoS ONE 3:e1662.
Suls A, Claeys KG, Goossens D, Harding B, Van Luijk R, Scheers S, Deprez L, Audenaert D, Van Dyck T, Beeckmans S, Smouts I, Ceulemans B, Lagae L,Buyse G, Barisic N, Misson JP, Wauters J, Del Favero J, De Jonghe P, Claes LR.2006. Microdeletions involving the SCN1A gene may be common in SCN1A-mutation-negative SMEI patients. Hum Mutat 27:914–920.
Tindall EA, Petersen DC, Woodbridge P, Schipany K, Hayes VM. 2009. Assessing high-resolution melt curve analysis for accurate detection of gene variants in complex DNA fragments. Hum Mutat 30:876–883.
van der Stoep N, van Paridon CDM, Janssens T, Krenkova P, Stambergova A,Macek M, Matthijs G, Bakker E. 2009. Diagnostic guidelines for highresolution melting curve (HRM) analysis: an interlaboratory validation of BRCA1 mutation scanning using the 96-well LightScannerTM. Hum Mutat 30:889–909.
Verheesen P, Roussis A, de Haard HJ, Groot AJ, Stam JC, Den Dunnen JT, Frants RR, Verkleij AJ, Verrips CT, Van Der Maarel SM. 2006. Reliable and controllable antibody fragment selections from Camelid non-immune libraries for target validation. Biochim Biophys Acta 1764:1307–1319.
Worm J, Aggerholm A, Guldberg P. 2001. In-tube DNA methylation profiling by fluorescence melting curve analysis. Clin Chem 47:1183–1189.
Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ. 2003. High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 49:853–860.
Zhou L, Errigo RJ, Lu H, Poritz MA, Seipp MT, Wittwer CT. 2008. Snapback primer genotyping with saturating DNA dye and melting analysis. Clin Chem 54:1648–1656.


推荐
关闭