关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

梳理心脏再生最新研究进展

2019.8.31

在心脏病发作后,死亡的心肌组织会由瘢痕组织替代。不过,瘢痕组织与心肌的搏动方式不相同,因而心脏的“泵血”能力下降。近年来,科学家们采用多种手段将心脏瘢痕组织和其他组织中的成纤维细胞直接重编程为心肌细胞。这一突破性的成果为未来的临床试验和心脏病患者治疗奠定基础。基于此,小编针对这一方面的最新进展,进行一番盘点,以飨读者。

1.Circulation Res:导入miR-294可让成体心脏细胞重获再生能力
doi:10.1161/CIRCRESAHA.118.314223

到了成年时,心脏不再能够补充受伤或患病的细胞。因此,心脏病发作等事件可能是灾难性的,比如导致大量细胞死亡和永久性功能下降。然而,在一项新的研究中,来自美国天普大学路易斯-卡茨医学院的研究人员发现,即使在严重的心脏病发作后,也有可能扭转这种损伤并恢复心脏功能。这是首次证实一种非常小的称为miR-294的RNA分子当被导入到心脏细胞中时,能够重新激活心脏细胞增殖并改善遭受类似于人类心脏病发作的事件的小鼠的心脏功能。相关研究结果于2019年6月21日在线发表在Circulation Research期刊上,论文标题为“Transient Introduction of miR-294 in the Heart Promotes Cardiomyocyte Cell Cycle Reentry After Injury”。
20190629070016782.png
图片来自CC0 Public Domain。
论文共同通讯作者、天普大学路易斯-卡茨医学院代谢疾病研究中心生理学助理教授Mohsin Khan博士说道,“在之前的研究中,我们已发现miR-294在发育中的心脏中积极地调节细胞周期。但是出生后不久,miR-294就不再表达了。”

在维持心肌损伤后,这些小鼠连续用miR-294治疗两周。在治疗两个月后,这些研究人员观察到它们的心脏功能明显改善,受损组织面积减少。对经处理的心脏细胞的检查揭示出细胞周期再进入的证据,表明这些细胞已被重新激活,因而重新获得产生新细胞的能力。他们还能够控制miR-294的表达,使得它开启或关闭,因而可以决定心脏中的增殖活动水平。

2.Cell Stem Cell:构建单细胞图谱,将心脏瘢痕组织细胞重编程为健康的心肌细胞
doi:10.1016/j.stem.2019.05.020

每年有79万名美国人遭受心脏病发作,这会让受损的瘢痕组织存在于心脏中,并限制心脏的高效跳动能力。但是,如果科学家们能够将称为成纤维细胞的瘢痕组织细胞重编程为健康的心肌细胞会怎样呢?人们通过实验室实验和小鼠研究在这方面取得了很大进展,但人类心脏重编程仍然是一项巨大的挑战。

如今,在一项新的研究中,来自美国北卡罗来纳大学教堂山分校和加州大学欧文分校的研究人员首次开发出一种稳定的可重复使用的将人成纤维细胞重编程为心肌细胞的简约平台。通过利用最新的单细胞技术和数学模拟,他们绘制出高分辨率的分子路线图,以便指导精确和有效的重编程。相关研究结果于2019年6月20日在线发表在Cell Stem Cell期刊上,论文标题为“Single-Cell Transcriptomic Analyses of Cell Fate Transitions during Human Cardiac Reprogramming”。论文通讯作者为北卡罗来纳大学教堂山分校麦卡利斯特心脏研究所副主任、病理学与检验医学副教授Li Qian博士。

Qian和她的团队将三种基因Mef2c、Gata4和Tbx5的混合物以特定的优化剂量导入人心脏成纤维细胞中。为了提高效率,他们筛选了一系列补充因子并鉴定出一种称为MIR-133的小RNA分子。将MIR-133添加到这种三基因混合物中---以及进一步的体外培养调整---可以高达40%~60%的效率将人心脏成纤维细胞重编程为心肌细胞。

接下来,Qian团队试图解答这种将人心脏成纤维细胞转化为心肌细胞的过程如何发挥作用。为了解答这个问题,他们研究了整个重编程过程中细胞的分子变化。他们的分析鉴定出这个重编程过程中的一个关键点,即细胞必须“决定”是继续向前变成心肌细胞,还是后退继续维持它们之前的成纤维细胞命运。一旦这个过程开始启动,一套信号分子和蛋白将细胞推向不同的分子途径上,这决定了它们产生的细胞类型。

这些研究人员还构建出一种独特的细胞命运指数(cell fate index)来定量评估这种重编程过程的进展。通过使用这种指数,他们确定人类心脏重编程的进展速度比先前描述的小鼠心脏重编程慢得多,这揭示了物种和重编程条件之间的关键差异。

3.Development:揭示心脏发育过程中的细胞信号
doi:10.1242/dev.172619

在心脏发育的后期,心内膜(细胞的内层)和心肌(心肌)之间的相互作用是至关重要的。而在心脏发育的最初阶段,这两个细胞层之间的信号传递一直比较难研究。 

如今,医学博士H. Scott Baldwin和他的同事建立了一个模型,在体外探索心内膜与心肌的相互作用。他们发现去除心内膜细胞可以减少收缩心肌细胞的数量和心肌特异性基因的表达。生长因子Bmp2的加入在一定程度上挽救了心肌细胞的成熟和功能。

发表在《Development》杂志上的这项研究为心内膜在早期心肌发育中的作用提供了直接证据,并可能指导基于干细胞的心肌生成疗法。

研究结果还指出,早期发育过程中心内膜与心肌相互作用的改变可能会导致先天性心脏缺陷。在近1%的活产婴儿中,先天性心脏缺陷仍然是导致出生缺陷死亡的主要原因。

4.PNAS:重大进展!发现胎盘干细胞能够再生心脏,有望开发出新型干细胞疗法来治疗心脏病
doi:10.1073/pnas.1811827116

在一项新的研究中,来自美国西奈山伊坎医学院的研究人员证实在动物模型中,来自胎盘的称为Cdx2细胞的干细胞能够在心脏病发作后再生健康的心脏细胞。这些研究结果可能代表了一种再生心脏和其他器官的新疗法。相关研究结果发表在2019年5月20日的PNAS期刊上,论文标题为“Multipotent fetal-derived Cdx2 cells from placenta regenerate the heart”。
20190629070016424.png
图片来自PNAS, 2019, doi:10.1073/pnas.1811827116。

论文通讯作者、西奈山伊坎医学院心血管再生医学主任Hina Chaudhry博士说道,“Cdx2细胞在历史上被认为仅在早期胚胎发育过程中产生胎盘,但是在此之前从未显示出再生其他器官的能力,这就是这项研究如此令人兴奋的原因。这些发现也可能为除心脏之外的其他器官开发再生疗法铺平道路。它们看起来就像是一群超动力的干细胞,这是因为它们能够靶向损伤部位,通过循环系统直接迁移到损伤部位,而且能够避免遭受宿主免疫系统排斥。”

为了测试Cdx2细胞的再生特性,这些研究人员在三组雄性小鼠中诱发了心脏病发作。第一组接受来自终末妊娠小鼠胎盘的Cdx2干细胞处理,第二组接受不表达Cdx2的胎盘细胞处理,第三组作为对照接受盐水处理。他们使用磁共振成像技术在诱导心脏病发作后立即分析所有小鼠,并且在诱发心脏病发作后接受细胞或生理盐水处理3个月后再次分析这些小鼠。他们发现,Cdx2干细胞处理组中的每只小鼠在心脏健康组织方面都有明显的改善和再生。到三个月时,这些干细胞直接迁移到心脏受损部位,并且形成新的血管和新的心肌细胞(跳动的心肌细胞)。注射生理盐水和非Cdx2胎盘细胞的小鼠发生心力衰竭,而且它们的心脏并未出现再生的证据。

这些研究人员注意到Cdx2细胞的另外两个特性:它们除了具有胚胎干细胞的所有蛋白,还具有其他的蛋白,这使得它们能够直接迁移到损伤部位,这是胚胎干细胞无法做到的事情,而且它们似乎避免了宿主免疫反应。当将来自胎盘的Cdx2细胞注射到另一只动物中时,宿主免疫系统并不排斥它们。

5.Nature重磅:基因疗法促进心脏再生
doi:10.1038/s41586-019-1191-6

来自伦敦国王学院的研究人员发现,一种基因疗法可以诱导心脏病发作后的心脏细胞再生。

在近日发表在《Nature》杂志上的这项研究中,研究团队将一小段名为microRNA-199的基因材料植入猪的心脏。这段基因可以在猪发生心肌梗死一个月后,促进其心功能几乎完全恢复。研究报告的主要撰写者、伦敦国王学院的Mauro Giacca教授说:"这对这一领域来说是一个非常激动人心的时刻。在用干细胞再生心脏的多次尝试都失败之后,我们第一次在大型动物身上看到了真正的心脏修复。"

这是第一次证明心脏再生可以通过使用一种有效的基因药物来实现,这种药物可以刺激大型动物的心脏再生,就像人类的心脏解剖和生理一样。

"我们还需要一段时间才能进行人体临床试验。我们仍然需要学习如何将RNA作为一种合成分子应用于大型动物,然后应用于患者,但我们已经知道,这在老鼠身上效果很好。"Giacca教授解释说。

6.Science:意外!甲状腺激素让我们失去心脏再生能力
doi:10.1126/science.aar2038; doi:10.1126/science.aax1006

尽管在美国每年发生的73.5万起心脏病发作中,大多数患者都存活了下来,但是与体内许多其他细胞不同的是,心脏细胞一旦遭受损伤,就不能够再生。在一项新的研究中,来自美国、澳大利亚和法国的研究人员发现,这个问题可追溯到我们最早的哺乳动物祖先,这些哺乳动物祖先可能失去了再生心脏组织的能力来换取温血状态(endothermy,也译作温血性),这是一场浮士德式的进化交易,它开启了哺乳动物时代,但却让现代人在心脏病发作后容易受到无法弥补的组织损伤。相关研究结果于2019年3月7日在线发表在Science期刊上,论文标题为“Evidence for hormonal control of heart regenerative capacity during endothermy acquisition”。 
20190629070017388.png
图片来自CC0 Public Domain。
甲状腺产生一对经过充分研究的激素,已知这些激素可调节体温、代谢率和正常的心脏功能。鉴于这些激素在促进热量产生以维持体温方面发挥着关键作用,因此它们被认为是从冷血到温血的进化过渡背后的驱动力。但是,这项新的研究表明,这些激素也有助于关闭心脏细胞分裂,从而阻止心脏组织在遭受损伤后自行修复。这一发现首次证实甲状腺激素、心脏发育和修复以及温血进化之间的关联性。 

Huang团队采用一种多物种方法,比较了41种不同脊椎动物物种中的心脏细胞“倍性(ploidy)”---细胞中每对染色体的拷贝数。倍性与细胞分裂和复制的能力密切相关。事实上,所有活跃分裂的动物细胞都是二倍体,每对染色体仅有一对,在每对染色体中,一个来自母本,另一个来自父本。相反,多倍体细胞含有每对染色体的多个拷贝并且通常不能分裂。

这种比较方法揭示了倍性与体温之间存在明显的关联性。冷血动物---鱼类、两栖动物和爬行动物---的心脏细胞主要是二倍体,并通过加快细胞分裂对心脏损伤作出反应。温血哺乳动物的心脏细胞主要是多倍体,而且实验室实验证实这些细胞很少因心脏损伤而发生分裂。

推荐
热点排行
一周推荐
关闭