关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

拉曼光谱的原理特点(一)

2020.2.19

昨天咱们讲了紫外分光光度计,今天就说一说拉曼光谱法。

分子振动也可能引起分子极化率的变化,产生拉曼光谱。拉曼光谱不是观察光的吸收, 而是观察光的非弹性散射。非弹性散射光很弱,过去较难观测。激光拉曼光谱的出现使灵敏度和分辨力大大提高,应用日益广泛。

拉曼散射效应的进展

1928年,印度物理学家拉曼(C.V.Raman)首次发现曼散射效应,荣获1930年的诺贝尔物理学奖。

1928-1940年,拉曼光谱成为研究分子结构的主要手段。

1960年以后,激光技术的发展使拉曼技术得以复兴。由于激光束的高亮度、方向性和偏振性等优点,成为拉曼光谱的理想光源。随探测技术的改进和对被测样品要求的降低,目前在物理、化学、医药、工业等各个领域拉曼光谱得到了广泛的应用,越来越受研究者的重视。

什么是拉曼光谱分析法

拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。

拉曼光谱仪原理

当光线照射到分子并且和分子中的电子云及分子键结产生相互作用,就会发生拉曼效应。对于自发拉曼效应,光子将分子从基态激发到一个虚拟的能量状态。当激发态的分子放出一个光子后并返回到一个不同于基态的旋转或振动状态。在基态与新状态间的能量差会使得释放光子的频率与激发光线的波长不同。

如果最终振动状态的分子比初始状态时能量高,所激发出来的光子频率则较低,以确保系统的总能量守衡。这一个频率的改变被名为Stokes shift。如果最终振动状态的分子比初始状态时能量低,所激发出来的光子频率则较高,这一个频率的改变被名为Anti-Stokes shift。拉曼散射是由于能量透过光子和分子之间的相互作用而传递,就是一个非弹性散射的例子。

关于振动的配位,分子极化电位的改变或称电子云的改变量,是分子拉曼效应必定的结果。极化率的变化量将决定拉曼散射强度。该模式频率的改变是由样品的旋转和振动状态决定。

1.Rayleigh散射:弹性碰撞;无能量交换,仅改变方向;

2.Raman散射:非弹性碰撞;方向改变且有能量交换;

拉曼光谱的特征

1. 对不同物质Raman 位移不同;

2.对同一物质Δν与入射光频率无关;是表征分子振-转能级的特征物理量;是定性与结构分析的依据;

3.拉曼线对称地发布在瑞利线两侧,长波一侧为斯托克斯线,短波一侧为反斯托克斯线;

4.斯托克斯线强度比反斯托克斯线强;

拉曼谱图的构成和特征

一张拉曼谱图通常由一定数量的拉曼峰构成,每个拉曼峰代表了相应的拉曼位移和强度。每个谱峰对应于一种特定的分子键振动,其中既包括单一的化学键,例如C-C,C=C,N-O,C-H等,也包括由数个化学键组成的基团的振动,例如苯环的呼吸振动、多聚物长链的振动以及晶格振动等。

拉曼光谱可以提供样品化学结构、相和形态、结晶度及分子相互作用的详细信息。

主要的拉曼光谱仪

激光Raman光谱仪(laser Raman spectroscopy)

Ar激光器:

波长: 514.5nm,488.0nm;

单色器:

光栅,多单色器;

检测器:

光电倍增管,光子计数器;

傅立叶变换-拉曼光谱仪(FT-Raman spectroscopy)

光源:Nd-YAG钇铝石榴石激光器(1.064um);

检测器:高灵敏度的铟镓砷探头;

 


推荐
热点排行
一周推荐
关闭