关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

活体动物体内生物发光和荧光成像技术基础原理与应用二

2020.6.29

(二)活体生物发光成像技术应用领域

活体生物发光成像技术是一项在某些领域有不可替代优势的技术,比如肿瘤转移研究、药物开发、基因治疗、干细胞示踪等方面。

1.肿瘤学

活体生物发光成像技术能够让研究人员能够直接快速的测量各种癌症模型中肿瘤的生长、转移以及对药物的反应。其特点是极高的灵敏度使微小的肿瘤病灶(少到几百个细胞)也可以被检测到,比传统方法的灵敏度大大提高了;非常适合于肿瘤体内生长的定量分析;避免由于宰杀老鼠而造成的组间差异;节省动物成本。由于以上特点,使基于转移模型、原位模型、自发肿瘤模型等方面的肿瘤学研究得到发展。建立肿瘤转移模型,可以观察肿瘤转移情况,进一步探讨肿瘤转移的机制;可进行原位接种,观察原位以及原位转移模型,使肿瘤学研究更接近肿瘤临床发病的微观环境;通过建立自发肿瘤模型,可以观察肿瘤发生机理。(图11-1)。

 

201291311573.jpg

11-1 肿瘤的长期检测,左图分别是7天,14天,30天成像。来自中国军事医学科学院

 

2.药物研究

在药效学评价方面,荧光素酶癌症模型可用于癌症体内用药在整体动物水平上进行长期疗效跟踪观察。利用无创伤活体成像对癌细胞生长的检测,可对癌症治疗之前和过程中的癌细胞的变化进行实时观测和评估。这种方式提供一个很好的对癌细胞的反应和复发评估的预诊断途径。用活体成像的方法比传统技术有更高的灵敏度,当用传统的方法还不能检测到瘤块时,用该技术已经可以检测到很强的信号。由于该技术只是检测活细胞,不能检测已经凋亡的细胞。而用传统的方法,不能区别正常细胞与凋亡的细胞,所以该技术可以比传统技术更早更灵敏的发现药物的疗效。

 

利用活体成像技术高灵敏度、观察方便的特点,在抗肿瘤药物临床前研究中,通过给予肿瘤接种的小鼠不同剂量,不同给药时间、不同给药途径,观察抗肿瘤药物的最佳给药途径、给药剂量及给药时间,从而制定合适的剂型与服药时间。

 

在药物代谢方面,标记与药物代谢有关的基因,比如CYP3A4等,研究不同的药物对该基因表达的影响,从而可以间接知道相关药物在体内代谢的情况。

 

在药剂学研究方面,可以通过把荧光素酶报告基因的质粒直接装载在药物载体中,观察药物载体的靶向脏器与体内分布规律(图11-2)。在药理学方面,还可以通过转基因小鼠的应用,观察药物作用的通路,用荧光素酶基因标记某一个兴趣基因,观察药物作用的通路。

 

201291311384.jpg

11-2利用IL-1Β转基因小鼠筛选抗炎症药物,来自上海南方模式生物研究中心

 

3.基因治疗

基因治疗是将正常基因或有治疗作用的基因通过一定方式导入靶细胞以纠正基因的缺陷或者发挥治疗作用,从而达到治疗疾病目的。目前,基因治疗主要是以病毒做载体,可应用荧光素酶基因作为报告基因加入载体,观察目的基因是否到达动物体内的特异组织和是否持续高效表达,这种非侵入方式具有低毒性及免疫反应轻微等优点且可以直接实时观察,了解病毒或载体侵染的部位和时域信息;荧光素酶基因也可以插入脂质体包裹的DNA分子中,用来观察脂质体为载体的DNA运输和基因治疗情况;也可以表达荧光素酶基因的质粒裸DNA为模型DNA,直接注入动物体内,利用生物发光成像可以分析不同载体、不同注射位点、不同注射量对荧光素酶基因表达的影响,同时也可以时空量化分析基因表达的分布、水平和持续时间。这种可视的方法直观地评价DNA的转染效率和表达效率,在基因治疗研究中具有重要的指导作用。


推荐
热点排行
一周推荐
关闭