关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

第三代半导体材料氮化镓(GaN)技术与优势详解(三)

2020.10.26

  设计注意事项

  采用GaN设计电源时,为降低系统EMI,需考虑几个关键因素:首先,对于Cascode结构的GaN,阈值非常稳定地设定在2 V,即5 V导通,0 V关断,且提供±18 V门极电压,因而无需特别的驱动器。其次,布板很重要,尽量以短距离、小回路为原则,以最大限度地减少元件空间,并分开驱动回路和电源回路,而且需使用解调电容。对于硬开关桥式电路,使用磁珠而不是门极电阻,不要用反向二极管,使用解调母线电容。

  此外,必须使用 浪涌保护器件,并通过适当的散热确保热性能,并行化可通过匹配门极驱动和电源回路阻抗完成,当以单个点连接时,要求电源和信号元件独立接地。

  一体化工作站正变得越来越轻薄,要求更轻和更小的 电源转换器,这通常通过提高开关频率来实现。传统Si MOSFET在高频工作下的开关和驱动损耗是一个关键制约因素。GaN HEMT提供较传统MOSFET更低的门极电荷和导通电阻,从而实现高频条件下的更高电源转换能效。

  演示板设计为240 W通用板,它输出20 A的负载电流和12 V输出电压, 功率因数超过98%,满载时总谐波失真(THD)低于17%。电源转换器前端采用功率因数校正(PFC) IC,将AC转换为调节的385 V DC 总线电压。升压转换器中的电感电流工作于CCM。升压PFC段采用安森美半导体的NCP1654控制器。次级是隔离的DC-DC转换器,将385 V DC总线电压转换为12 V DC输出电压。隔离的DC-DC转换通过采用LLC谐振拓扑实现。次级端采用同步整流以提供更高能效。LLC电源转换器采用安森美半导体的NCP1397,提供97%的满载效率,而同步整流驱动器是NCP 4304。

  NCP432用于反馈路径以调节输出电压。演示板采用GaN HEMT作为PFC段和LLC段原边的开关,提供0.29 m?的低导通电阻和> 100 V/ns 的高dv/dt,因而导致开关和导通损耗低,其低反向恢复电荷产生最小的反向恢复损耗。

  其中,NCP1654提供 可编程的过流保护、欠压检测、 过压保护、软启动、CCM、平均电流模式或峰值电流模式、可编程的过功率限制、浪涌电流检测。NCP1397提供精确度为3%的可调节的最小开关频率、欠压输入、1 A/0.5 A峰值汲/源电流驱动、基于计时器的过流保护(OCP)输入具自动恢复、可调节的从100 ns至2 μs的死区时间、可调节的软启动。NCP4304的关键特性包括具可调节阈值的精密的真正次级零电流检测、自动寄生电感补偿、从电流检测输入到驱动器的关断延迟40 ns、零电流检测引脚耐受电压达200 V、可选的超快触发输入、禁用引脚、可调的最小导通时间和最小关断时间、5 A/2.5 A峰值电流汲/源驱动能力、工作电压达30 V。


推荐
热点排行
一周推荐
关闭