关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

叶绿素荧光技术:常量和微量营养元素胁迫测量

2020.7.13


植物生长与各种常量和微量营养元素密切相关,所以测量各种常微量元素对植物的胁迫效应具有很重要的意义。大量的研究表明,Fv/Fm、Yield和ETR是与植物CO2固定能力密切相关的三个参数,所以在研究中倍受瞩目。

但我们应该知道,植物营养元素的胁迫除非到了非常严重或者较为严重的程度才会影响到光系统II。这三个参数并不能反映所有的植物营养元素胁迫,有的可以反映轻度胁迫、有的只能反映中度胁迫、有的则只能反映非常严重或者较重程度的胁迫。

下面的内容指出了Fv/Fm和 Yield两个参数在指示作用上的局限性。

 

Fv/Fm – 暗适应条件下测量

 Fv/Fm 对非常低水平的氮素胁迫比较敏感。 (Baker 2004)

 Fv/Fm 对较为严重的硫素胁迫比较敏感。 (Baker 2004)

 Fv/Fm 对镍元素胁迫不敏感。 (Joshi 2004)

 Fv/Fm 对锌元素胁迫不敏感。(Joshi 2004)

 

Yield or ⊿F/Fm’ –光照条件下测量

 

Yield 对较为严重的硫素胁迫比较敏感。(Baker 2004)

注:Fv/Fm需要在暗适应条件下测量,可使用OPTIC公司的所有调制式荧光测量仪进行测量,包括OS-5P、OS1P 性价比很高的便携式OS-30P;Yield的测量需要在光照条件下当叶片达到光合作用稳态的时候进行测量,可使用OPTIC公司的OS1-FL、OS5p进行测量。K-Step、 Performance Index、NPQ、qP、FRFex360/FRFex400等参数则只能使用OS5P进行测量。硫元素和氮元素胁迫可以通过叶绿素相对含量测定仪CCM200进行测量

 

下面的列表显示了对不同植物胁迫类型敏感的测量参数,及其应用文献。

 

 

 

营养元素

测量参数

参考文献

Fv/Fm

Yield

Yield and ETR

Kastori R., 1995

Unknown

Yes

Fv/Fm

Shmidts-Eiberger 2002

Yes

Unknown

没有文献

-

-

-

Yield

Joshi 2004 Tripathy 1983

Unknown

Yes

1. Yield,

2. Fo/F

测量时间5 minutes

1. Joshi 2004, Lanaras 1993

2. Adams 2000, Kriedemann 1985

Unknown

Yes

K Step in OJIP

Jiang 2006

Unknown

Unknown

Performance Index  in OJIP

Hermans 2006

Unknown

Unknown

Lack references

-

-

-

ETR

Joshi 2004 Tripathy 1981

No – Joshi 2004

Probable

1. FRFex360/FRFex440 2.Yield at high light level 3. K-Step

4. Absorption measurement in the green and infrared range to measure chlorophyll content.

5. Yield

6. qP

1.Sampson 2000 2. Cheng 2001

3. Strasser 2004 4. Peterson 2006 5.Cavender- Bares 2004, Baker 2004

6. Baker 2004

只在高胁迫水平比较敏感 Baker 2004

能够很好反映高程度胁迫Cheng 2001

1. Performance index in OJIP

2. Fv/Fm

1. Ripley 2004

2. Stark 2000

Yes

Unknown

1. Yield

2. NPQ

3. qP

1, Weng 2008

2. Weng 2008

3. Weng 2008

Unknown

Yes

Absorption measurement in the green and infrared range to measure chlorophyll content.

Peterson 2006

只在高胁迫水平比较敏感Baker 2004

能够很好反映较高程度胁迫Baker 2004

Fs in Yield

Joshi 2004 Tripathy 1980

No -Joshi 2004

Less sensitive than Fs

 

 

References:

 

 

Adams M., Norvell A. Philpot D. Peverly J. (2000) Spectral detection of Micronutrient Deficiency in ‘Bragg’ Soybean, Agronomy J. 92:261-268

 

Cavender-Bares J. & Fakhri A. Bazzaz 2004 – “From Leaves to Ecosystem: Using Chlorophyll Fluorescence to Assess Photosynthesis and Plant Function in Ecological Studies”. Jeannine Cavender Bares, Fakhri A. Bazzaz, From Chapter 29,

 

“Chlorophyll a Fluorescence a Signature of Photosynthesis”, edited by George Papaqeorgiou and Govindjee, published by Springer 2004, PO Box 17, 3300 AA Dordrecht, The Netherlands, page 746-747 ETR Drought stress and npq

 

Baker N.R, Rosenquist E. (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities, Journal of Experimental Botany, 55(403):1607-1621

 

Cheng L., Fuchigami L., Breen P., (2001) “The relationship between photosystem II efficiency and quantum yield for CO2 assimilation is not affected by nitrogen content in apple leaves.” Journal of Experimental Botany, 52(362):1865-1872

 

Hermans C, Johnson GN, Strasser RJ, Verbruggen N (2004) Physiological characterization of magnesium deficiency in sugar beet: acclimation to low magnesium differentially affects photosystems I and II. Planta 220: 344-355.

 

Joshi M.K., Mohanty P. (2004): Chlorophyll a fluorescence as a probe of heavy metal ion toxicity in plants. In: Papageorgiou G.C. (eds.): Chlorophyll Fluorescence: A Signature of Photosynthesis Advances in Photosynthesis and Respiration. Springer, Dordrecht: 637–661.

Kriedemann, P.E., R.D. Graham, and J.T. Wiskich. (1985) Photosynthetic dysfunction and in vivo changes in chlorophyll a fluorescence from manganese-deficient wheat leaves. Aust. J. Agric. Res. 36: 157–169

 

Lanaras T. Moustakas M. Symeonidis L. Diamantoglou S., & Karataglis S. (1993) Plant metal content, growth responses and some photosynthetic measurements on field – cultivated wheat growing on ore bodies enriched in Cu. Physiol Plant 88: 307-314

 

Samson G, Tremblay N., Dudelzak A.E., Babichenko S.M., Dextraze L., Wollring J., (2000) NUTRIENT STRESS OF CORN PLANTS: EARLY DETECTION  AND DISCRIMINATION USING A COMPACT MULTIWAVELENGTH  FLUORESCENT LIDAR Proceedings of EARSeL-SIG-Workshop LIDAR, Dresden/FRG,  June 16 – 17

 

Strasser R.J, Tsimilli-Michael M., and Srivastava A. (2004) - Analysis of Chlorophyll a Fluorescence Transient. From Chapter 12, “Chlorophyll a Fluorescence a Signature of Photosynthesis”, edited by George Papaqeorgiou and Govindjee, published by Springer 2004, PO Box 17, 3300 AA Dordrecht, The Netherlands, page 340

 

Stark Z., Niemyska B., Bogdan J., Tawalbeh R.N. (2000) Response of Tomato Plants to Chilling Stress in Association with Nutrient or Phosphorus Starvation // Plant Soil.. V. 226. P. 99–106.

 

Tripathy BC, Mohanty P., (1980) Zinc-inhibited electron transport of photosynthesis in isolated barley chloroplasts. Plant Physiology 66:1174-1178 

 

Tripathy BC, Bhatia B., Mohanty P., (1981) Inactivation of chloroplast photosynthetic electron transport activity by Ni ++. Biochim Biophys Acta 638:217-224

 

Tripathy BC, Bhatia B., Mohanty P., (1983) Cobalt ions inhibit electron-transport activity in Photosystem II without affecting Photosystem I Biochim Biophys Acta 722: 88-93

 

Weng X-Y., Zheng C-J., Xu H-X, Sun J-Y., (2008) Characteristics of photosynthesis and functions of the water-water cycle in rice (Oryza sativa) leaves in response to potassium deficiency, Physiologia Plantarum Vol 131 Issue 4 PP 614-621 

 


推荐
热点排行
一周推荐
关闭