关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

深度学习在雷达中的研究综述(三)

2020.10.06

3.2 基于SAE的SAR图像处理研究

SAE的特点是可自动从无标记数据中学习特征,并且给出比原始数据更好的特征描述,进一步通过该学习到的特征得到更好的分类效果。有学者将其应用于地物目标分类、舰船分类以及城市变化检测等场景。并且通过SAE对SAR图像进行分析,其与传统方法相比,展现SAE具有自动学习高层特征的特性。

首先,在地物目标分类中,文献[60–64]分别通过SAE对极化SAR数据进行了目标类型的识别。例如,西安电子科技大学的高蓉[60]针对极化SAR数据具有斑点噪声以及数据量庞大等问题,对其进行SAE处理,同时结合了极化SAR原始特征与邻域极化特征实现了对地物数据的有效分类。在实验测试过程中,针对Flevoland数据的识别获得了85.1%的准确率,对Germany数据获得了85.3%的准确率。文献[61,62]分别将SAE对极化SAR的识别效果与传统方法进行比较。其中,文献[61]同样对Flevoland数据进行测试,运用其中10%的数据进行训练,90%的数据进行测试,识别率达到93.58%,而运用传统的SVM方法所获得的识别率仅为89.86%。此外,文献[62]对Flevoland数据进行测试,SAE方法识别率达到98.61%,而传统的随机森林方法对应识别率仅为97.67%,基于SVM的识别方法为97.50%。并且多层自编码器方法仅为94.27%,可以看出对网络加入稀疏编码过程的必要性。在此基础上,西安电子科技大学的石俊飞等人[62]还提出,虽然SAE方法能够学习高层特征,有效地表示城市、森林等复杂的地物结构,却难以保留图像的边界和细节信息。因此,可将SAE与极化层次语义模型相结合。实验表明,针对San Francisco数据,相比于单独运用SAE方法进行识别,该方法将准确率提升了0.87%[63,64]

此外,国防科学技术大学的涂松[65]提出通过SAE深度网络对SAR图像进行目标提取。在大尺寸SAR图像中,首先进行多尺寸显著区域检测,之后对显著图进行SAE深度网络分类,实现大尺寸SAR图像目标快速提取。其中,分别选择600个目标样本和600个背景杂波样本用于训练SAE网络。并且为了提高效率,将所有的训练样本降采样为64×64,然后将所有像素排成一个列向量,进行SAE训练。在该SAE网络中,输入为4096维,隐层数量为3层,每个隐层神经元个数为20,输出为2维。该网络能实现车辆目标和杂波背景两类样本的分类。文献[66]在进行目标分类时首先进行特征提取,进而通过归一化和白化的预处理。针对提取到的相互独立的特征进行SAE网络提取编码结果,最终获得分类标签。该方法充分体现了SAE方法的无监督性,且针对不同特征进行分类的能力。

SAE应用广泛,可对城市变化情况进行检测。由于该领域下带标签的已有数据量较小,因此很难通过传统的监督学习方法实现分类。文献[67]通过SAE进行检测,在数据量较小的情况下,检测概率达到92.34%,并且相比于传统方法虚警率减小了2.64%。此外,考虑到SAR图像具有斑点噪声的特点,且去噪自编码器对该噪声具有一定程度的鲁棒性。因此,中国科学技术大学的阮怀玉[68]考虑将多尺度稀疏表示与去噪自编码器网络相结合形成新的学习架构,实现了舰船的分类。分别对MSTAR地面目标数据集与TerraSAR-X舰船数据集进行分类,并且得到了98.83%和92.67%的识别率。

3.3 基于DBN的SAR图像处理研究

DBN应用灵活、广泛。其即可作为一种非监督学习模型,类似于AE,可尽可能保留原始特征,同时降低特征维数;又可以用于监督学习,类似于分类器,可尽可能减小分类错误率。因此,DBN可对不同SAR图像进行识别及其他操作处理。

在极化SAR目标识别领域,前文已经介绍了CNN以及SAE方法的研究成果。而本部分主要介绍基于DBN的极化SAR目标识别处理。其中,西安电子科技大学的罗小欢[69]结合极化SAR图像散射特征和数字图像特征以及颜色直方图特征训练一个有多个RBM组成的DBN模型。具体地,首先,将极化SAR数据的相干矩阵转化成一个9维极化SAR数据;之后,在每个维度上抽取大量模块,并对列向量进行RBM训练,从而获得每个维度的结构特征;最后,将该特征与原始相干矩阵元素相结合,训练DBN,实现极化SAR数据的分类。文献[70]则将DBN识别结果与传统方法识别结果进行对比,其中,DBN的识别准确率为87%,而基于SVM方法的识别率仅为44%。此外,西安电子科技大学的赵昌峰[71]将Wishart分布引入RBM,使极化SAR特征表达更加明显,提出了Wishart RBM (WRBM)。在对Flevoland和San Francisco数据进行测试时,识别率分别达到90.06%和91.49%。

此外,文献[72]提出由于DBN能够充分发掘主辅强度图和相干图在空间域和时间域上的相关性,因此可运用该方法进行干涉SAR图像分类处理。并且在对San Francisco进行实验分析时,分别讨论DBN层数、隐层节点数、学习率对网络识别率的影响。最终,在4层DBN、50个隐层节点以及0.1的学习率情况下,将DBN方法与传统方法进行对比。其中,K近邻(K-Nearest Neighbor, KNN)、SVM、SAE与DBN识别结果分别为:89.13%,90.92%,90.89%以及91.03%,可见DBN方法识别优势较为明显。此外,该文献将DBN用于SAR图像配准,且其能获得鲁棒性特征以及实现准确地配准。具体地,分别将两幅待匹配的SAR图像输入,并提取图像块,将其输入DBN,输出即为匹配标签。

4 基于深度学习的多种雷达数据处理研究

在上一节重点总结了基于深度学习的SAR图像处理研究,而在实际情况下,有学者分别对HRRP、Micro-Doppler谱图以及R-D谱图进行研究,并对其进行深度学习方法处理。同样能获得较优的结果,并与传统方法相比,深度学习算法能够有效地提取对应图像的深度特征,便于后续处理。

4.1 基于深度学习的HRRP处理研究

HRRP能反映目标散射点沿距离方向的分布信息,且获取方法更为简单。其特点是通过发出某一波长的高频信号,通过反射成像,从而获得HRRP。图6为4种目标的HRRP示意图。在此基础上,有学者选择通过不同的深度学习方法对HRRP进行目标的识别,其主要包括CNN, SAE, DBN以及RNN等。

R18040-6.jpg图 6 4种目标HRRP示意图Fig.6 HRRPs of four targets

文献[73]提出,对HRRP进行基于CNN的目标种类识别。具体地,该网络包含2层5×1大小的卷积层,以及2层3×1的最大池化层,1层包含1000节点的全连接层,最后运用softmax进行分类。通过对8类仿真HRRP数据进行网络训练及测试发现,深度CNN识别准确率大于深度感知机,约10%左右。在此基础上,对该数据加入高斯白噪声,使得处理后数据信噪比范围为–20~40 dB。并且每类数据进行1000次蒙特卡洛实验,对3类目标进行识别,平均准确率达到91.4%。说明CNN对HRRP进行识别时鲁棒性较强。

南京航空大学的张欢[74]对Su27, J6, M2K 3种仿真战斗机的HRRP数据分别采用SVM、深度神经网络(Neural Network, NN)、SAE方法进行分类。在固定输入数据为128维情况下,分别讨论了深度学习方法中层数、隐层节点数、数据信噪比以及目标姿态对识别效果的影响。其中,当对25 dB数据进行2层且隐层节点数为50的网络进行训练及识别时,NN和SAE平均识别率分别为79.63%和85.00%,明显高于传统SVM的74.26%。文献[75]运用SAE方法提取HRRP特征,之后对其进行极限学习机的分类。该方法通过SAE获取有效分类特征,并且极限学习机的结构简单,网络训练速度相对较快。并且经过测试,发现在识别率相近的情况下,该方法训练时长是经典SAE方法分类的1/6,效率提升明显。此外,文献[76]对SAE进行改进,对无标签数据进行目标相关性学习,提出SCAE (Stacked Corrective AutoEncoder)方法,进一步提升对HRRP的分类效果。

文献[77,78]均采用DBN对HRRP数据进行目标类型识别。其中,文献[77]提出对于RBM部分进行可视层和隐层之间的模糊(fuzzy)连接,即FRBM。通过实验发现,该模型能够有效削减取值为0的参数的个数,从而防止过拟合。同时,针对含噪数据,其鲁棒性更强。在该文章中,首先对3种飞机模型的HRRP仿真数据分别进行KNN、支持向量数据描述(Support Vector Domain Description, SVDD)、RBM和FRBM方法识别,平均识别率分别为82.3%,85.7%,88.9%和94.3%。其次,分别对原始数据加入高斯白噪声得到的不同信噪比(20 dB, 10 dB, 5 dB)数据,以及加入椒盐噪声的数据分别进行RBM和FRBM分类处理,发现所有情况下FRBM识别率均高于RBM情况,且超出的识别率在10%以上。此外,文献[78]考虑了不同类别数据量不平衡的问题,并且实验证明,当不同类型HRRP数据量差异明显的情况下,通过DBN进行分类,不同类型的识别率差距明显。因此,该文献提出在进行DBN分类前,对样本进行t分布随机邻域插入处理,并对插入后的数据进行随机采样,扩充了相应类型的样本量,从而使不同种类样本量得到平衡。之后,再进行DBN的训练与识别。在该情况下,3类数据的平均识别率为92.8%,而在原始数据不平衡的情况下,平均识别率仅为56.3%,识别率提升明显。

文献[79]考虑到传统的CNN模型不能提取相邻时间输入的样本之间的相关性,而循环神经网络(Recurrent Neural Network, RNN)恰能提取该特征,从而提出对HRRP进行RNN处理。该文献采用RNN中的长短时记忆循环神经网络(Long-Short Term Memory recurrent neural network, LSTM)对HRRP进行分类。LSTM模型的输入节点为128,输出节点数为3,隐层节点数为50。对175幅3类HRRP进行LSTM训练,并对100幅HRRP进行测试,全部识别正确。

4.2 基于深度学习的Micro-Doppler谱图处理研究

微多普勒效应是由物体及其构建的微动产生的物理现象。雷达目标的Micro-Doppler谱图对于目标的检测识别具有重要意义。一般情况下,通过信号处理方法从雷达回波信号中提取表征目标微动部件情况的时频谱图,而对于单一维度的雷达回波无法获取该信息。图7为两个仿真目标的时频谱图。对于Micro-Doppler谱图,已有学者采用深度学习方法对其进行分析,提取深度信息,实现目标识别任务。其中,鉴于CNN方法对处理图像的优越性,最受人们青睐。此外,SAE方法能够在无监督情况下提取深层特征,也成为人们研究的重点。并且有学者将两者结合,或选择卷积自编码器(Convolutional Automatic Encoder, CAE)对Micro-Doppler谱图进行分析,获得明显的分类效果。

R18040-7.jpg图 7 两仿真目标时频谱图Fig.7 Time-frequency map pf two simulation targets

文献[80–85]均选择深层CNN方法对Micro-Doppler谱图进行类型识别。其中,文献[80]对7种人为动作进行包含3层卷积层,3层最大池化层、1层全连接层以及softmax的CNN分类处理。该方法与传统PCA, SVM方法识别率进行比较,分别为95.2%, 84.0%以及89.2%。此外,文献[81]通过Micro-Doppler谱图的识别进行手势识别处理。其中,90%的数据进行5层DCNN训练,并对10%的数据进行测试,得到的7种手势在4个场景下的平均识别率为93.1%。文献[82]则通过包含2层卷积层、2层池化层以及1层全连接层的CNN,先后进行人的检测与人动作的识别。在检测部分,通过该网络对人、狗、马、车4种目标进行分类,从而检测人是否存在,其检测概率达到97.6%;在识别部分,对人的跑、走、卧等7种动作进行分类,平均识别概率为90.9%。在文献[83]中,研究对人类步态的分类问题,其选用了14层CNN模型,其中包含8层卷积层,3层最大池化层和2层全连接层以及softmax分类器。相比于传统神经网络和SVM分类方法的68.3%和60.3%的识别率,运用CNN方法的情况下识别率有明显提升,达到86.9%。在此基础上,文献[84]通过基于CNN的迁移学习对人类水下动作进行识别。

此外,有学者将SAE架构应用于Micro-Doppler谱图的分类问题中。例如,文献[85]运用SAE方法对人的运动情况进行分类,得到87%的平均识别率,同样数据进行SVM分类器分类,得到识别率仅为58%。文献[86]运用3层SAE进行微动数据分类,获得89%的平均识别率,而对127个特征进行SVM分类,识别率仅为72%。在此基础上,文献[87,88]将SAE与CNN相结合进行Micro-Doppler谱图分类处理。其中,西安电子科技大学的张国祥[44]提出,首先运用SAE进行无监督的特征提取,得到特征谱图,之后对特征谱图进行CNN的分类,最终得到95.62%的平均识别率。文献[89]则运用CAE方法进行分类。其中,在编码器部分,由3层卷积层,3层池化层组成;在译码器部分,由3层反卷积层和3层逆池化层组成。最终,将提取到的特征进行分类器分类。在此基础上,提出运用迁移学习方法对网络初始化参数进行设置,从而对CAE模型的识别率提升了10%。

4.3 基于深度学习的R-D谱图处理研究

当对动作进行分类时,除了进行时频分析,距离向信息同样至关重要,即R-D谱图可作为分类研究对象。在线性调制连续波(Linear Frequency Modulated Continuous Wave, LFMCW)雷达中,首先对回波进行去斜处理,之后在快时间域进行快速傅里叶变换(Fast Fourier Transform, FFT),获得目标的实时径向距离信息;进而对各个距离单元内的基带信号的慢时间域FFT处理,获得回波信号在距离-多普勒域的能量分布情况,即R-D谱图。由多帧R-D谱图组成,即R-D谱图序列描述一个持续一段时间的行为动作。其中,基于雷达的动态手势识别处理为典型的应用场景。

针对动态手势的R-D谱图序列,文献[90]提出对Google的Soli传感器采集的10个人的11类手势动作进行R-D谱图序列分类。首先,对于每帧R-D谱图进行卷积及全连接处理,之后针对整个动作的不同时间点特征图之间进行LSTM连接,最终获得87.6%的平均识别率。本课题组对基于R-D谱图的手势数据进行了CNN的识别,对向前、向后、旋转、静止4种手势进行分类,示意图如图8所示。其中,CNN方法的平均识别率达到87.8%,同组数据进行传统动态规划方法识别,平均识别率仅为74.0%,即证明通过CNN方法对该手势进行识别,识别率提升明显。


推荐
热点排行
一周推荐
关闭