关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

合成孔径雷达原理(二)

2020.10.06

Range Resolution

Range is the direction perpendicular to flight path of the aircraft. The vertical beamwidth theta.gif, shown in Figure 3, is determined by the wavelength (lambda.gif) and the antenna height Wa such that theta.gifv = lambda.gif / Wa. Referring to Figure 4, we see that the width of the ground swath Wg, also called the range extent, is simply calculated as:

theory_eqn5.gif

Geometry of Side-Looking Real Aperture Radar

Figure 3. Geometry of a side-looking real aperture radar.

and so

theory_eqn6.gif

where nu.gif is the incidence angle of the beam at the midpoint of the swath (equal to the look angle phi.gif) and Rm is the slant range (distance) from the antenna to the midpoint of the swath.

Range Resolution of a Side-looking Real Aperture Radar

Figure 4. Range resolution of a side-looking real aperture radar.

Ground resolution is defined as the minimum distance on the ground at which two object points can be imaged separately, shown in Figure 4 as the distance delta.gifRg. Two objects can be distinguished if the leading edge of the pulse echo from the more distant object arrives at the antenna later than the trailing edge of the pulse echo from the nearer object. Thus if their distances to the antenna are different by at least half of the pulse length (the distance the pulse travels in the time tau.gifp during which the transmitter is turned on) then the objects are resolvable. Therefore the ground range resolution is

theory_eqn7.gif

where delta.gifRg is the slant range resolution, nu.gif is the incidence angle, Lp is the pulse length (in units of distance), tau.gifp is the pulse duration (in units of time) and c is the speed of light. Note that as you approach the nadir line directly below the aircraft, nu.gif approaches zero making sin(nu.gif) approach zero so that the ground range resolution becomes extremely poor. This makes sense since the objects near the nadir line are all virtually the same distance from the antenna, making them impossible to distinguish.

To achieve a ground range resolution small enough to be useful, the pulse duration çp would have to be too short to generate enough energy to produce a sufficient echo signal to noise ratio (SNR). To get around this, a technique known as pulse compression is often used together with a type of processing of the returned signal known as matched filtering (which we will not go into here, though a good description can be found in Curlander, see SAR References) to produce both high resolution and a high SNR. The ground range resolution possible with these techniques is

theory_eqn8.gif

where BR is the frequency bandwidth of the transmitted radar pulse. The resolution can be further improved by increasing the frequency bandwidth.

Azimuth Resolution

Azimuth is the direction parallel to the flight path of the aircraft. Figure 3 shows that the angular spread of the radar beam in the azimuth direction is equal to theta.gifH = lambda.gif / La where lambda.gif is the wavelength of the transmitted beam and La is the length of the radar antenna in the azimuth direction. This spread is due to interference of the waves emitted from and received by the dipoles of the antenna, which causes the angular spread to decrease as the aperture length increases (a longer antenna produces a tighter beam, much as a longer barrel of a gun produces less dispersion). Two objects on the ground and with the same slant range R can only be imaged separately if they are not both within the radar beam at the same time. Thus the azimuth resolution is

theory_eqn9.gif

Principles of Synthetic Aperture Radar

Because of the way in which microwaves interact with the atmosphere and the ground, only a select few frequency bands are useful for imaging. These are shown in Figure 5. The wavelength affects the penetration depth and also the size of a target necessary to return the radar. This shall be discussed later.

Microwave Frequency Bands

Figure 5. Microwave frequency bands useful for imaging.

For a specific frequency f (or wavelength lambda.gif) and slant range R, the azimuth resolution is entirely dependent on the aperture length La. However, for the altitudes at which satellite or airborne imaging sensors operate (in the 1-10 GHz region), engineering difficulties make it is impossible to achieve values of La / lambda.gif greater than several hundred. For example, the new Canadian satellite RADARSAT, launched in 1995, orbits at 792 km and operates at a frequency of 5.3 GHz (C-Band). The real aperture limit to the azimuth resolution would be

theory_eqn10.gif

Through the use of synthetic aperture technology, however, RADARSAT can achieve a resolution as low as 9 m.

It was in 1951 that Carl Wiley first realized that the Doppler spread of the echo signal could be used to synthesize a much longer aperture (thus the name synthetic aperture radar) to greatly improve the resolution of a side-looking radar.

The Doppler Effect

When a detector moves with respect to a source of waves, a shift in frequency is observed known as the Doppler effect. When a source emitting waves with frequency f recedes from the observer at a velocity v, the observed frequency is

theory_eqn11.gif

When the source approaches the observer, the observed frequency is

theory_eqn12.gif

where v is always positive. Thus a receding source exhibits a lower frequency and an approaching source exhibits a higher frequency than the actual frequency emitted.

When two target points on the ground are separated in the azimuth direction, they are at slightly different angles from the antenna with respect to the line of flight. Because of this, they have slightly different speeds at any given moment relative to the antenna. Therefore the signal echoed from each target will have its frequency shifted a different amount from the original. To calculate the Doppler frequency shift for a specific target, refer to Figure 6 as we first calculate dR/dt--the relative speed with which the target and antenna approach each other.

SAR Geometry

Figure 6. SAR geometry for calculating the Doppler frequency shift for a point target.

To find the R-directional component of Vrel (the velocity with which the target approaches the sensor), we can project Vrel (parallel to x) onto a line parallel to R to get

theory_eqn13.gif

Now, we can calculate the frequency observed by the ground target:

theory_eqn14.gif



推荐
热点排行
一周推荐
关闭