关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

激光扫描影像系统在3D肿瘤球体或干细胞克隆球体快速...2

2020.6.01

结果:

肿瘤微球体生长在超低粘附板中

 A          96孔板                                               


Figure 2A: 生长在96孔超低粘附板中的HepG2肿瘤微球体的全孔TIFF图像,图像底部显示了加入每孔的阿霉素浓度。2B-C:药物量效曲线(mean±SEM,n=6)

 B

 C

 

 A          384孔板                                          


Figure 3A:生长在384孔超低粘附板中的HepG2肿瘤微球体的全孔TIFF图像,图像底部显示了加入每孔的阿霉素浓度。3B-C:药物量效曲线(mean±SEM,n=8)

 B

 C

2014121102913194.gif 2014121102927489.gif

肿瘤微球体生长在软琼脂中

 A

 B

   

 D



  Figure 4A: 生长在96孔板软琼脂中的HepG2肿瘤微球体的全孔TIFF图像,图像上显示了加入每孔的阿霉素浓度。4B-D:药物量效曲线(mean±SEM,n=3)

 

 A

 B

   

 D



 

Figure 5A: 生长在384孔板软琼脂中的HepG2肿瘤微球体的全孔TIFF图像,图像上显示了加入每孔的阿霉素浓度。5B-D:药物量效曲线(mean±SEM,n=4)


总结:

生长在 3D培养系统中的细胞群体、不同细胞类型、微组织结构相互协调、相互作用,模拟了生命物质在体内微环境中的真实生存环境,为研究者对疾病的剖析和攻克提供了高质量的数据信息。我们在96和384微孔板中建立了两种简单且稳定的进行肿瘤微球体3D培养的方法,通过染色和图像采集,获得数目、面积、体积和荧光强度等信息。药物量效曲线的一致性结果体现了两种方法的可靠性和可重复性,这些数据表明acumen hci激光扫描系统是对基于两种培养系统获得的肿瘤微球体进行高通量(5分钟/板)分析的理想平台,该平台在过去的研究中已经被广泛地应用于肿瘤学[7-9]和干细胞研究领域[10-12]。



 

References:

 

1. Maria V, Sharon G, Frances B, et al. Advances in establishment and analysis of three dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biology, 2012, 10:29

 

2. Patricio G, Nicola J H, Ute A, et al. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch. Toxicol, 2013, 87(8): 1315-1530

 

3. Yinzhi L, Amish A, Ke Ch, et al. Neural Cell 3D Microtissue Formation is Marked by Cytokines’ Up-Regulation. PLoS One, 2011, 6(10): e26821

 

4. Yesl J, Ah R K, Jae S L. 3D co-culturing model of primary pancreatic islets and hepatocytes in hybrid spheroid to overcome pancreatic cell shortage. Biomaterials, 2013, 34(15): 3784-3794

 

5. Anna I A, Brenda K M, Glen D P, et al. A 3-D organoid kidney culture model engineered for high-throughput nephrotoxicity assays. Biomaterials, 2012, 33(18): 4700-4711

 

6. Sasai Y. Next-generation regenerative medicine: organogenesis from stem cells in 3D culture. Cell Stem Cell, 2013, 12(5): 520-530

 

7. Weijuan W, Chen Bi, Kelly M C, et al. Inhibition of tumor growth and metastasis in non-small cell lung cancer by LY2801653, an inhibitor of several oncokinases, including MET. Clin Cancer Res, 2013, 19(20): 5699–5710

 

8. Kai W, Ho Y L, Shephanie S, et al. Genomic Landscape of Copy Number Aberrations Enables the Identification of Oncogenic Drivers in Hepatocellular Carcinoma. Hepatology, 2013, 58(2): 706-717

 

9. Shane R H, Jeremy T, Anthony P O, et al. An HTS-Compatible 3D Colony Formation Assay to Identify Tumor-Specific Chemotherapeutics. J Biomol Screening, 2013, 18(10): 1298-1308

 

10. Koppany V, Hydeyuki O, Robert D, et al. A molecular screening approach to identify and characterize Inhibitors of glioblastoma stem cells. Mol Cancer Ther, 10(10), 1818-1828

 

11. Anne D, Jimmy E, Richard J S, et al. CXCR4 Expression in Prostate Cancer Progenitor Cells. PLoS One, 2012, 7(2): e31226

 

12. Claudia P, Ina K, Leoni K. Discovery of the cancer stem cell related determinants of radioresistance. Radiother Oncol, 2013, 108(3), 378-387


推荐
热点排行
一周推荐
关闭